Statistical Behavior of a Financial Model by Lattice Fractal Sierpinski Carpet Percolation

نویسندگان

  • Xu Wang
  • Jun Wang
چکیده

The lattice fractal Sierpinski carpet and the percolation theory are applied to develop a new random stock price for the financial market. Percolation theory is usually used to describe the behavior of connected clusters in a random graph, and Sierpinski carpet is an infinitely ramified fractal. In this paper, we consider percolation on the Sierpinski carpet lattice, and the corresponding financial price model is given and investigated. Then, we analyze the statistical behaviors of the Hong Kong Hang Seng Index and the simulative data derived from the financial model by comparison.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain Growth on Percolation Structures

We discuss the dynamics of phase transformations following a quench from a high temperature disordered state to a state below the critical temperature in the case in which the system is not translationally invariant. In particular we consider the ordering dynamics on deterministic fractal substrates and on percolation networks by means of two models and both for non conserved order parameter an...

متن کامل

Critical Behavior of the Ferromagnetic Ising Model on a Sierpiński Carpet: Monte Carlo Renormalization Group Study

We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpiński fractal with Hausdorff dimension df ≃ 1.8928. This method is shown to be relevant to the calculation of the critical temperature Tc and the magnetic eigen-exponent yh on such structures. On the other hand, scaling corrections hinder the calculation of the temperature...

متن کامل

Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal , a rigorous result

We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for the Ising spin model defined on the Sierpinski carpet fractal. The theorem is inspired by the classical Peierls argument for the two dimensional lattice. Therefore, this exact result proves the existence of spontaneous magnetization for the Ising model in low dimensional structures, i.e. structures ...

متن کامل

Annihilative fractals of coffee on milk formed by Rayleigh–Taylor instability

We have discovered a new fractal pattern, coffee exhibits on a horizontal surface, with a fractal dimension 06 . 0 88 . 1 ± , when a heavy coffee droplet interacts with the surface of lighter milk. Parts of coffee pattern on the surface disappear due to Rayleigh–Taylor instability, and the annihilative behavior produces the fractal pattern. Coffee fractals and the Sierpinski carpet have common ...

متن کامل

Analysis on the Sierpinski Carpet

The ‘analysis on fractals’ and ‘analysis on metric spaces’ communities have tended to work independently. Metric spaces such as the Sierpinski carpet fail to satisfy some of the properties which are generally assumed for metric spaces. This survey discusses analysis on the Sierpinski carpet, with particular emphasis on the properties of the heat kernel. 1. Background and history Percolation was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012